
38 The Delphi Magazine Issue 68

The 51st State
It’s back to state machines
to answer some reader questions

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Oh boy, oh boy. I certainly hit a
motherlode with my two arti-

cles on state machines and regular
expressions (in the January and
February 2001 issues). I can’t
remember when I had such a lot of
email about one of my articles.
From the messages I received, it
certainly seems that a lot of my
readers were interested in these
topics and wanted to see more. So,
gentle reader, with your permis-
sion, I’ll devote this article to some
of your questions and suggestions.
Of course, you should re-read the
two articles in question to get the
background for what we’ll be dis-
cussing this time: I won’t be going
over much of the previous informa-
tion that I’ve already presented.

Any Comments?
One of the more popular topics
was how to parse an Object Pascal
source file. This is a large subject,
and so we should approach it
gradually.

The topic has been covered
before by Marco Cantù in Issues 23
and 30, and by Paul Warren in Issue
38 [So it’s time to order that Collec-
tion 2000 back issues CD! Ed].

We’ll start off source file parsing
with a simple automaton to extract
all of the comments in a source file.
This idea sounds a little bogus, but
in reality it has some interesting
applications. For example, we
could be extracting specially for-
matted comments that will form
the basis for a help file. I’m sure
you’ve seen this kind of product;
possibly the most familiar one is
Time2Help. Another example, per-
haps, would be to form the basis of
a spell-checker for source code.

For our purposes, however,
writing a program to extract com-
ments from a source file is a good
teaching aid in how to use state
machines.

For this exercise, we shall
assume that we will be reading a
source file character-by-character
and not line-by-line. Possibly one
of the most important habits to
break out of when using automata
on a text file is the one of reading
the file as a set of lines. The state
machines we were discussing are
all character-based, so we should
get into the habit of viewing the
source file as a sequence of charac-
ters. That’s not to say we couldn’t
devise an automaton that was
line-based, of course, but let’s keep
it simple. The first problem, then,

is how to read a file character-
by-character.

Over the past several years I’ve
certainly come to believe that the
most important hierarchy of
classes in the Delphi VCL (or CLX,
for that matter) is the TStream
hierarchy. Borland R&D designed
it well and, once you get used to
the basic layout, it lends itself to
some wonderful extensions.
Normally, though, when develop-
ers have to use a stream, they pick
one of the existing ones, or they
write a new one that descends
from one of them. There’s nothing
wrong with either of these choices,
of course, but we’ll do something
different: we’ll use delegation and
write a stream filter. A stream filter
is a TStream descendant that uses a
pre-created TStream descendant
internally to hold the stream data.

Input Character Stream
Consider my original initial prob-
lem: reading a file as a stream of

type
TaaInCharStream = class(TStream)
private
FBufEnd : integer;
FBuffer : PByteArray;
FBufPos : integer;
FStream : TStream;

protected
procedure icsGetBuffer;

public
constructor Create(aStream : TStream);
destructor Destroy; override;
function Read(var Buffer; Count : longint) : longint;
override;

function Write(const Buffer; Count : longint) :
longint; override;

function Seek(Offset : longint; Origin : word) :
longint; override;

function GetChar : char;
end;

constructor TaaInCharStream.Create(aStream : TStream);
begin
inherited Create; {create the ancestor}
FStream := aStream; {save the stream}
GetMem(FBuffer, BufSize); {create the buffer}

end;
destructor TaaInCharStream.Destroy;
begin

{free the buffer}
if (FBuffer <> nil) then
FreeMem(FBuffer, BufSize);

inherited Destroy;
end;
function TaaInCharStream.GetChar : char;
begin
repeat
{make sure the buffer has data}
if (FBufPos = FBufEnd) then
icsGetBuffer;

{if no more data, return #0 to signal end of stream}
if (FBufEnd = 0) then
Result := #0

{otherwise return the current character}
else begin
Result := char(FBuffer^[FBufPos]);
Assert(Result <> #0, 'TaaInCharStream.GetChar: ‘+
‘input stream is not text, read null');

inc(FBufPos);
end;

until (Result <> CR);
end;
procedure TaaInCharStream.icsGetBuffer;
begin
FBufPos := 0;
FBufEnd := FStream.Read(FBuffer^, BufSize);

end;

➤ Listing 1: Input character
stream.

April 2001 The Delphi Magazine 39

characters. We could just use
TFileStream and the Readmethod to
get the characters one by one. This
would be horrendously inefficient,
mainly because the TFileStream is
unbuffered: every call to Read is
translated into a call to the Win-
dows API to read from the encapsu-
lated file. Calling the Windows API
every time to read a single charac-
ter is not my idea of fun. So, Plan A
would be to write a TFileStream
descendant that buffered the data
from the file by reading the file
buffer-by-buffer and doling out the
characters one-by-one from the
buffer. Nothing wrong with that,
certainly, but it’s rather limited.
What if we wanted to buffer
another type of stream? Well, we
would have to write another buf-
fered TStream descendant, copying
much of the code we’d already
written.

No, a much better plan, in my
view, is to write a stream filter. Our
stream filter will be a buffered
stream (in other words, it will
descend from TStream and inherit
all its behavior) but it will read its
buffers full of data from another
stream, one that we pass to the
filter’s constructor. (The reason
it’s called a filter, by the way, is that
all data from the original stream
passes through the filter stream
and we could, if needed, alter that
data. Some examples: decompress-
ing the data on reading, replacing
CR/LF pairs by single LF charac-
ters, uppercasing all characters,
etc.) The stream filter will be spe-
cially designed for text streams; in
other words, we’ll write a special
GetChar method to return the next
character from the stream. We
could still use the Read method of

course, but we
will optimize the
GetChar method to
return a single
character. It will
return a null char-
acter when the
stream is exhau-
sted (and this
forces us to accept that GetChar
should only be used on text
streams).

Listing 1 shows the input charac-
ter stream. I’ve deliberately made
it a read-only stream (it’s much
easier to code that way and we gen-
erally use streams for pure input or
output and not mixed I/O). As you
can see from looking at this code,
the class reads data from its under-
lying stream in chunks of 8Kb, and
then doles it out as needed. Not
only is there no write functionality,
but there’s no seek functionality
either: for the reasons I’ll be using
the input character stream I don’t
need it. (This, by the way, is a tenet
of Extreme Programming: don’t
write code until you need it. So, I
shall implement the Seek method
once I decide I really need it, and
not before.) On this month’s disk,
you’ll also find an output character
stream, written to the same type of
specification: pure output stream,
no seeking.

Now we have an efficient input
character stream, we can go back
to our original problem: extracting
comments from a source file. In
Object Pascal, comments are

defined in three
separate ways:
in between
braces, {}, in
between (* and
*), and finally
the rest of a line

after a // sequence. In fact, you can
view the final definition as this: the
comment starts with the // charac-
ter pair and ends with the CR/LF
pair. Of course, now that we can
write source files with Kylix on
Linux, we should accept lines that
just end in a single LF character.
(In fact, if you read the code for
GetChar carefully in Listing 1, you’ll
see that it never returns a CR char-
acter, so the user of the character
stream will only see LF characters
delimiting lines.)

The Comment Automaton
A first attempt at a state machine
to recognize comments is given in
Figure 1. There’s nothing too excit-
ing about this particular automa-
ton: if you trace the various
possibilities you can see that com-
ments are certainly recognized.
Converting the figure into code
would be fairly easy.

However, there’s a bug. If you
did convert the automaton into
code and then ran it on the source
file you’d just written, you’d see
the problem straight away. Let’s
explain without writing the actual
code. If you’re like me, you’d write
the code using the character con-
stant { at least once. It’s there so
that you could recognize the start
of one type of comment. The com-
piler knows that this open brace is
not the beginning of a comment,
but your code does not since the
original automaton didn’t.

We should therefore include an
extra state in the automaton to
recognize character and string
constants and to ignore comment-
like characters or pairs of charac-
ters in between the quotes. Figure

A

B

S

T

P

Q

R

brace

brace

not brace

slash

slash

not
slashparen

not
star

star

star

not
paren

not
star

paren

eol

not
eol

A

B

S

T

P

Q

R

brace

brace
not brace

slash

slash

not
slashparen

not
star

star

star

not
paren

not
star

paren

eol

not
eol

Uquote

quote

not quote

➤ Figure 1:
Automaton
to recognize
comments.

➤ Figure 2:
Better
automaton
to recognize
comments.

40 The Delphi Magazine Issue 68

2 shows this revised automaton,
and Listing 2 shows the equivalent
code. This listing merely writes out
the comments to an output charac-
ter stream. In fact, if we were writ-
ing a spell checker for source code,
the automaton we designed would
enable us to spell check embedded
string constants as well: a bonus.

Tokenizing
Having seen this simple case, let’s
approach parsing Pascal from a
different angle. Although it would
be nice to create a gigantic state
machine for parsing a complete
Pascal source file, unfortunately
it’s the wrong approach. One way
to look at it would be to write a
top-down parser from the Pascal
grammar in the same way as we did
for regular expressions. That’s still
a massive job, much greater than
we can deal with in this small

article (I like the approach taken by
Writing Compilers And Interpreters
by Ronald Mak: an 840 page behe-
moth of a book, now in its second
edition). Better still is writing a
bottom-up parser.

Instead we’ll look at how to
break down a Pascal source file
into different tokens. From this we
can do some interesting things like
reformatting code, creating an
HTML file to display the code,
pretty print the file, and so on.

The job has been made fairly
easy for us by the foresight of
Pascal’s designer, Niklaus Wirth.
Unlike some languages, such as
Fortran, scanning the source code
and returning tokens is fairly inde-
pendent of what those tokens actu-
ally mean syntactically. We can
write the tokenizer without worry-
ing about whether the code is syn-
tactically correct; that’s the job of
the compiler. For example, our
tokenizer will parse nonsense code
like this:

not Identifier := 2.0 <=;

into the individual parts (not, Iden-
tifier, :=, 2.0, <=, and ;). It turns
out that we can write the tokenizer
as a finite state machine.

First, though, we should work
out what we might see as we scan
source code. Identifiers and
keywords start with a letter, and
have zero or more letters, digits
and underscores afterwards.
Space characters separate identifi-
ers and keywords. Numbers start
with a digit (or maybe a minus sign
or a plus sign) and have other
digits, plus decimal radix points,
afterwards. There’s a whole slew
of punctuation marks, the most
obvious being the semicolon ;, but
also =, :=, <=, ^ and so on so forth.
Notice that some of the punctua-
tion marks are doubled-up. Other
than that, there’s nothing to trip
us up.

Our tokenizer will work as a
standalone routine. We call it with

procedure ExtractComments(aInStm : TaaInCharStream;
aOutStm : TaaOutCharStream);

type
TStates = ({the types of states...}
sScanNormal, {normal scanning}
sScanBraceComment, {scanning comment after getting
'{'}

sScanAfterSlash, {scanning after getting first '/'}
sScanSlashComment, {scanning comment after getting '//'}
sScanAfterParen, {scanning after getting '('}
sScanPStarComment, {scanning comment after getting ‘(*'}
sScanAfterStar, {scanning after getting '*' in a

(**) comment}
sScanString); {scanning a string}

var
State : TStates;
Ch : char;

begin
State := sScanNormal;
Ch := aInStm.GetChar;
while (Ch <> #0) do begin
case State of
sScanNormal :
begin
case Ch of
'''': State := sScanString;
'(' : State := sScanAfterParen;
'/' : State := sScanAfterSlash;
'{' : begin

aOutStm.PutChar('{');
State := sScanBraceComment;

end;
end;{case}

end;
sScanBraceComment :
begin
aOutStm.PutChar(Ch);
if (Ch = '}') then begin
aOutStm.PutChar(#10);
State := sScanNormal;

end;
end;

sScanAfterSlash :
begin
case Ch of
'''': State := sScanString;
'(' : State := sScanAfterParen;
'/' : begin

aOutStm.PutChar('/');
aOutStm.PutChar('/');
State := sScanSlashComment;

end;
'{' : begin

aOutStm.PutChar('{');
State := sScanBraceComment;

end;
else
State := sScanNormal;

end;{case}
end;

sScanSlashComment :
begin
aOutStm.PutChar(Ch);
if (Ch = #10) then
State := sScanNormal;

end;
sScanAfterParen :
begin
case Ch of
'''': State := sScanString;
'(' : State := sScanAfterParen;
'*' : begin

aOutStm.PutChar('(');
aOutStm.PutChar('*');
State := sScanPStarComment;

end;
'/' : State := sScanAfterSlash;
'{' : begin

aOutStm.PutChar('{');
State := sScanBraceComment;

end;
else
State := sScanNormal;

end;{case}
end;

sScanPStarComment :
begin
aOutStm.PutChar(Ch);
if (Ch = '*') then
State := sScanAfterStar;

end;
sScanAfterStar :
begin
aOutStm.PutChar(Ch);
if (Ch = ')') then begin
aOutStm.PutChar(#10);
State := sScanNormal

end
else
State := sScanPStarComment;

end;
sScanString :
begin
if (Ch = '''') then
State := sScanNormal;

end;
end;{case}
Ch := aInStm.GetChar;

end;
end;

➤ Listing 2: Extracting comments
from a Pascal source file.

42 The Delphi Magazine Issue 68

a character stream primed and
ready to release the next charac-
ter, and it will return a token identi-
fier and the token string (at least in
the case of an identifier/keyword
or a number). By token identifier, I
mean a value from an enumerated
type, so the first thing is to define
the enumerated type. Listing 3
shows the various token identifiers
we’ll be recognizing. The character
stream will be left at the next char-
acter to be read after the token was
extracted and identified. The
tokenizer will automatically jump
over white space (blanks, tabs or
LF characters).

There’s still a little wrinkle,
though. When we are scanning
through the character stream, how
do we know when we reach the end
of a token? For example, if we were
scanning program Project1; at the
start of a .DPR project file, how do
we know that program ends at the m?
The answer is, of course, we don’t:
we have to read the next character
(or at least peek at it). If we read it
and discovered that we didn’t need
it, we shall have to give it back to
the character stream somehow so
that it can be returned next time.
For white space that’s not really

type
TaaPascalToken = ({types of Pascal tokens...}
ptInvalidToken, {..some kind of error}
ptEndOfFile, {..end of file}
ptKeyword, {..keyword, eg, if, while, do, ...}
ptIdentifier, {..identifier}
ptString, {..string or character constant}
ptHexNumber, {..number in hex, starts with $}
ptNumber, {..sequence of digits, maybe with radix point}
ptComment, {..comment, any type}
ptComma, {..comma: ,}
ptSemicolon, {..semicolon: ;}
ptColon, {..colon: :}
ptPeriod, {..period: .}
ptRange, {..range: ..}
ptEquals, {..equals char: =}
ptNotEquals, {..not equals: <>}
ptLess, {..less than: <}
ptLessEqual, {..less than or equal: <=}
ptGreater, {..greater than: >}
ptGreaterEqual, {..greater than or equal: >=}
ptAssign, {..assignment: :=}
ptOpenParen, {..open parenthesis: (}
ptCloseParen, {..close parenthesis:)}
ptOpenBracket, {..open bracket: [}
ptCloseBracket, {..close bracket:]}
ptCaret, {..caret: ^}
ptHash, {..hash: #}
ptAddress, {..ampersand: @}
ptPlus, {..addition: +}
ptMinus, {..subtraction: -}
ptMultiply, {..multiplication: *}
ptDivide); {..division: /}

➤ Listing 3: Pascal tokens.

procedure ReadNumber(aInStm : TaaInCharStream;
var aToken : string);

var
Ch : char;
State : (BeforeDecPt, GotDecPt, AfterDecPt, Finished);

begin
State := BeforeDecPt;
while (State <> Finished) do begin
Ch := aInStm.GetChar;
if (Ch = #0) then begin
State := Finished;
aInStm.PutBackChar(Ch);

end else begin
case State of
BeforeDecPt :
begin
if (Ch = '.') then begin
State := GotDecPt;

end else if (Ch < '0') or (Ch > '9') then begin
State := Finished;
aInStm.PutBackChar(Ch);

end else
aToken := aToken + Ch;

end;
GotDecPt :
begin
if (Ch = '.') then begin
aInStm.PutBackChar(Ch);
aInStm.PutBackChar(Ch);
State := Finished;

end else begin
aToken := aToken + '.';
aToken := aToken + Ch;
State := AfterDecPt;

end;
end;

AfterDecPt :
begin
if (Ch < '0') or (Ch > '9') then begin
State := Finished;

aInStm.PutBackChar(Ch);
end else
aToken := aToken + Ch;

end;
end;

end;
end;

end;
procedure ReadHexNumber(aInStm : TaaInCharStream;
var aToken : string);

var
Ch : char;
State : (NormalScan, Finished);

begin
State := NormalScan;
while (State <> Finished) do begin
Ch := aInStm.GetChar;
if (Ch = #0) then begin
State := Finished;
aInStm.PutBackChar(Ch);

end else begin
case State of
NormalScan :
begin
if not (Ch in ['A'..'F', 'a'..'f', '0'..'9'])
then begin
State := Finished;
aInStm.PutBackChar(Ch);

end else
aToken := aToken + Ch;

end;
end;

end;
end;

end;

{ CONTINUES ON FACING PAGE...}

➤ Listing 4:
Simple Pascal tokenizer.

required, but we might be scanning
something like i:integer and the
colon would have to be put back.

Is that it? Nope, I’m afraid not.
There’s yet another wrinkle. Let’s
suppose we were scanning

A : array [0..9] of byte;

and we’d got to the 0. As we’re
scanning along, it looks like we’re
reading a decimal number: zero,
point. It’s not until we reach the
second period that we suddenly

say whoops, it’s actually a range.
We would in fact have to put back
two periods in that case. Luckily
this is the worst it gets for Pascal.
I altered the character stream
class to enable us to put back up to
two characters (the PutBackChar
method) and for the GetChar
method to release the characters
which have been put back first,
before continuing with the actual
stream data.

April 2001 The Delphi Magazine 43

{ ... LISTING 4 CONTINUED FROM FACING PAGE}

procedure ReadIdentifier(aInStm : TaaInCharStream;
var aToken : string);

var
Ch : char;

begin
Ch := aInStm.GetChar;
while Ch in ['A'..'Z', 'a'..'z', '0'..'9', '_'] do begin
aToken := aToken + Ch;
Ch := aInStm.GetChar;

end;
aInStm.PutBackchar(Ch);

end;
procedure ReadString(aInStm : TaaInCharStream;
var aToken : string);

var
Ch : char;

begin
Ch := aInStm.GetChar;
while (Ch <> '''') and (Ch <> #0) do begin
aToken := aToken + Ch;
Ch := aInStm.GetChar;

end;
if (Ch = '''') then
aToken := aToken + Ch

else
aInStm.PutBackchar(Ch);

end;
procedure ReadBraceComment(aInStm : TaaInCharStream;
var aToken : string);

var
Ch : char;

begin
Ch := aInStm.GetChar;
while (Ch <> '}') and (Ch <> #0) do begin
aToken := aToken + Ch;
Ch := aInStm.GetChar;

end;
if (Ch = '}') then
aToken := aToken + Ch

else
aInStm.PutBackchar(Ch);

end;
procedure ReadSlashComment(aInStm : TaaInCharStream;
var aToken : string);

var
Ch : char;

begin
Ch := aInStm.GetChar;
while (Ch <> #10) and (Ch <> #0) do begin
aToken := aToken + Ch;
Ch := aInStm.GetChar;

end;
aInStm.PutBackchar(Ch);

end;
procedure ReadParenComment(aInStm : TaaInCharStream;
var aToken : string);

var
Ch : char;
State : (NormalScan, GotStar, Finished);

begin
State := NormalScan;
while (State <> Finished) do begin
Ch := aInStm.GetChar;
if (Ch = #0) then begin
State := Finished;
aInStm.PutBackChar(Ch);

end else begin
aToken := aToken + Ch;
case State of
NormalScan :
if (Ch = '*') then
State := GotStar;

GotStar :
if (Ch = ')') then
State := Finished

else
State := NormalScan;

end;
end;

end;
end;
procedure AAGetToken(aInStm : TaaInCharStream;
var aTokenType : TaaPascalToken; var aToken : string);

var
Ch : char;

begin
{assume we have an invalid token}
aTokenType := ptInvalidToken;
aToken := '';
{ignore any whitespace prior to the token}
Ch := aInStm.GetChar;
while (Ch <> #0) and (Ch <= ' ') do
Ch := aInStm.GetChar;

{if we've reached end-of-file, exit returning that token
type}

if (Ch = #0) then begin
aTokenType := ptEndOfFile;
Exit;

end;

{parse the token based on the current character}
case Ch of
'#' : aTokenType := ptHash;
'$' : begin

aTokenType := ptNumber;
aToken := Ch;
ReadHexNumber(aInStm, aToken);

end;
'''': begin

aTokenType := ptString;
aToken := '''';
ReadString(aInStm, aToken);

end;
'(' : begin

Ch := aInStm.GetChar;
if (Ch <> '*') then begin
aInStm.PutBackChar(Ch);
aTokenType := ptOpenParen;

end else begin
aTokenType := ptComment;
aToken := '(*';
ReadParenComment(aInStm, aToken);

end;
end;

')' : aTokenType := ptCloseParen;
'*' : aTokenType := ptMultiply;
'+' : aTokenType := ptPlus;
',' : aTokenType := ptComma;
'-' : aTokenType := ptMinus;
'.' : begin

Ch := aInStm.GetChar;
if (Ch = '.') then
aTokenType := ptRange

else begin
aInStm.PutBackChar(Ch);
aTokenType := ptPeriod;

end;
end;

'/' : begin
Ch := aInStm.GetChar;
if (Ch <> '/') then begin
aInStm.PutBackChar(Ch);
aTokenType := ptDivide;

end else begin
aTokenType := ptComment;
aToken := '//';
ReadSlashComment(aInStm, aToken);

end;
end;

'0'..'9' :
begin
aTokenType := ptNumber;
aToken := Ch;
ReadNumber(aInStm, aToken);

end;
':' : begin

Ch := aInStm.GetChar;
if (Ch = '=') then
aTokenType := ptAssign

else begin
aInStm.PutBackChar(Ch);
aTokenType := ptColon;

end;
end;

';' : aTokenType := ptSemicolon;
'<' : begin

Ch := aInStm.GetChar;
if (Ch = '=') then
aTokenType := ptLessEqual

else if (Ch = '>') then
aTokenType := ptNotEquals

else begin
aInStm.PutBackChar(Ch);
aTokenType := ptLess;

end;
end;

'=' : aTokenType := ptEquals;
'>' : begin

Ch := aInStm.GetChar;
if (Ch = '=') then
aTokenType := ptGreaterEqual

else begin
aInStm.PutBackChar(Ch);
aTokenType := ptLess;

end;
end;

'@' : aTokenType := ptAddress;
'A'..'Z', 'a'..'z', '_' :

begin
aTokenType := ptIdentifier;
aToken := Ch;
ReadIdentifier(aInStm, aToken);

end;
'[' : aTokenType := ptOpenBracket;
']' : aTokenType := ptCloseBracket;
'^' : aTokenType := ptCaret;
'{' : begin

aTokenType := ptComment;
aToken := '{';
ReadBraceComment(aInStm, aToken);

end;
end;

end;

44 The Delphi Magazine Issue 68

Listing 4 shows the tokenizer. I
haven’t shown the automaton that
it implements (it’s very long and
thin with a billion-and-one termi-
nating states), but I’m sure you get
the idea by following the code.
Notice that the piece of code that
scans an identifier is itself an
automaton, as is the code for rec-
ognizing a number, a hex number,
and the various types of com-
ments. (For recognizing a floating-
point number, I have followed the
Pascal definition: there must be at
least one digit before and after the
decimal radix point.) The tokenizer
also returns comments: we don’t
want to discard anything at this
level.

Adding Keyword Detection
The code as written does not rec-
ognize any keywords yet. All
sequences that start with a letter
and are followed by letters, digits
or underscores are just lumped
together as ‘identifier’ tokens.
However, it’s still usable. Listing 5
shows a simplistic code obfus-
cator, one that just removes all
the indentation, comments and
human-required white space and
leaves a single blank between
tokens that need it (for example,
between identifiers and numbers).
It outputs lines that are about 70
characters long. The Delphi com-
piler doesn’t care about white

space, of course, and will happily
compile obfuscated code gener-
ated by this program. (To save
space, I’ve not shown all the token
types in Listing 5.)

So what about those keywords,
then? Well, the first thing we need
to do is get a list of them. The
Delphi help file provides that
(search for ‘reserved words’ and
‘directives’). For each identifier we
scan in the tokenizer we shall have
to check whether the identifier
exists in this list of keywords and
hence is one. I imagine that my
regular readers already have their
hands in the air, saying ‘hash
table’, for this is the obvious
choice. Luckily, we already have
one in our Algorithms Alfresco
toolbox and can reuse it.

Before we use the tokenizer,
then, we need to create the key-
word hash table and feed it the
keywords. After we’ve finished
using the tokenizer we need to free
this hash table. Sounds to me as if a
class is required. Listing 6 shows
this class.

From this tokenizer we could
start to write a pretty formatter;
however, it’s going to take some
doing and I’ll defer it until a later
article.

Infinite Regexes
Let’s put aside Pascal tokenizing
for now and go back to regular
expressions. In February 2001’s
article, I presented a complete
engine for parsing, compiling and

then matching regular expres-
sions. The class worked very well,
at least for the regular expressions
I was trying it out on. About three
weeks ago, however, one of my
customers was pointing out a
problem with the regular expres-
sion engine in TurboPower’s
SysTools product. Since this is my
area of expertise, I experimented
with the regex and, there was no
doubt about it, the engine was at
fault. Since the SysTools regex
engine is written using a different
algorithm than the one I presented
in these pages, I thought it would
be instructive to try the regex out
on the Algorithms Alfresco engine
as well.

The experiment was dreadful.
Just prior to running out of
memory, the machine went into
some big league disk thrashing as
it used the swap file to try and ful-
fill my memory requirements.
What went wrong?

The regex concerned is X(.+)+X
and the string we try to match is XX
followed by about 50 non-X charac-
ters. The match should fail. (The
test comes from Mastering Regular
Expressions by Jeffrey E F Friedl,
O’Reilly & Associates, Inc, 1997.)
The regex is a little ‘unusual’ to say
the least, but still valid. It says that
a matching string should consist of
an X, followed by one or more sets
of one or more characters, fol-
lowed by an X. Using the Algorithms
Alfresco regex engine, the test pro-
gram runs out of memory before it

var
F : TFileStream;
InF : TaaInCharStream;
T : system.text;
PrevType : TaaPascalToken;
TokenType : TaaPascalToken;
Token : string;
Count : integer;

begin
F := nil;
InF := nil;
try
F := TFileStream.Create('AAPasTok.pas', fmOpenRead or
fmShareDenyWrite);

InF := TaaInCharStream.Create(F);
System.Assign(T, 'c:\ZZPasTok.pas');
System.Rewrite(T);
try
Count := 0;
PrevType := ptEndOfFile;
aaGetToken(InF, TokenType, Token);
while (TokenType <> ptEndOfFile) do begin
case TokenType of
ptKeyword, ptIdentifier, ptNumber :
begin
if (PrevType = ptKeyWord) or

(PrevType = ptIdentifier) or
(PrevType = ptNumber) then begin
write(T, ' ');
inc(Count);

end;

write(T, Token);
inc(Count, length(Token));

end;
ptString :
begin
write(T, Token);
inc(Count, length(Token));

end;
ptComma :
begin
write(T, ',');
inc(Count);

end;
..other token types..

end;
if (Count >= 70) then begin
writeln(T);
Count := 0;

end;
if (TokenType <> ptComment) then
PrevType := TokenType;

aaGetToken(InF, TokenType, Token);
end;

finally
System.Close(T);

end;
finally
InF.Free;
F.Free;

end;

➤ Listing 5: Simple Pascal source
code obfuscator.

April 2001 The Delphi Magazine 45

can report that the string does not
match. Why?

The first thing to note is that the
algorithm isn’t at fault. If I’d had
enough memory the algorithm
would have finished eventually.
But the amount of memory
required would have been much
more than I could ever have slotted
into the machine.

The next thing to have a look at is
the NFA that is auto-generated. I
have reproduced this in Figure 3. It
looks simple enough: only 6 states
(note that I’ve used the state num-
bers generated by the regex
engine, where states 1 and 5 were
optimized away). The problem
comes from the fact that state 3 has
a no-cost move back to 2 and also
one to 4. State 4 also has a no-cost
move back to 2 as well as one to 6.
Whenever the matching logic pops
state 3, it will push state 2 and state
4 to the deque. Popping state 3 will
enqueue state 3. Popping state 4
will push states 6 and 2. Popping
state 2 will enqueue state 3. There-
fore, every time state 3 is popped,
it results in state 3 being enqueued
twice more. This is an exponential
process. The first time we hit state
3, we enqueue state 3 twice. The

next time round, those two state 3s
in the deque result in four state 3s
being enqueued. In the next cycle,
those four multiply to eight. And so
on.

Essentially, every cycle is
another character from the input
string. If I had 50 non-X characters,
I would end up with 250 state 3s
enqueued in the deque. Each item
in the deque is 4 bytes, so the algo-
rithm would require 252 bytes just
for the deque. That’s four million
gigabytes or so. No wonder my
machine was thrashing the swap
file.

What can we do? The answer is
to remove those pesky no-cost
moves and convert the NFA into a
DFA.

Consider the problem. State 0 in
Figure 3 just goes to state 2 when
the current character is an X. End
of story, no problem. State 2, how-
ever, can go to state 2, or 6 when
the current character is any char-
acter at all, just by following all the

no-cost moves until we end up at a
state that needs to match some-
thing. States 3 and 4 aren’t really
needed at all; they just serve as
stopping points as we follow the
various no-cost moves.

What we need to do is to
optimize our transition table a
little further. For every state in the
original transition table, we need
to work out all of the states it can
reach via the no-cost moves. We
just need to make a note of the
states it can reach that actually
match something. Each state will
then have a list of other states, not
just one, that can be reached with
a match on the current character.
There will be no states left that
have no-cost moves. The slight
problem is that we don’t want to
enter an infinite or exponential
loop as we are analyzing the transi-
tion table: we need to mark the

type
TaaPascalParser = class
private
FInStrm : TaaInCharStream;
FKeywords : TaaHashTableLinear;

protected
procedure ppInitKeywords;

public
constructor Create(aInStm : TaaInCharStream);
destructor Destroy; override;
procedure GetToken(var aTokenType : TaaPascalToken;

var aToken : string);
end;

const
KeywordCount = 106;
KeywordList : array [0..pred(KeywordCount)] of string = (
{reserved words}
'AND', 'ARRAY', 'AS', 'ASM', 'BEGIN', 'CASE', 'CLASS',
'CONST', 'CONSTRUCTOR', 'DESTRUCTOR', 'DISPINTERFACE',
'DIV', 'DO', 'DOWNTO', 'ELSE', 'END', 'EXCEPT',
'EXPORTS', 'FILE', 'FINALIZATION', 'FINALLY', 'FOR',
'FUNCTION', 'GOTO', 'IF', 'IMPLEMENTATION', 'IN',
'INHERITED', 'INITIALIZATION', 'INLINE', 'INTERFACE',
'IS', 'LABEL', 'LIBRARY', 'MOD', 'NIL', 'NOT', 'OBJECT',
'OF', 'OR', 'OUT', 'PACKED', 'PROCEDURE', 'PROGRAM',
'PROPERTY', 'RAISE', 'RECORD', 'REPEAT',
'RESOURCESTRING', 'SET', 'SHL', 'SHR', 'STRING', 'THEN',
'THREADVAR', 'TO', 'TRY', 'TYPE', 'UNIT', 'UNTIL',
'USES', 'VAR', 'WHILE', 'WITH', 'XOR',
{directives}
'ABSOLUTE', 'ABSTRACT', 'ASSEMBLER', 'AUTOMATED',
'CDECL', 'CONTAINS', 'DEFAULT', 'DISPID', 'DYNAMIC',
'EXPORT', 'EXTERNAL', 'FAR', 'FORWARD', 'IMPLEMENTS',
'INDEX', 'MESSAGE', 'NAME', 'NEAR', 'NODEFAULT',
'OVERLOAD', 'OVERRIDE', 'PACKAGE', 'PASCAL', 'PRIVATE',
'PROTECTED', 'PUBLIC', 'PUBLISHED', 'READ', 'READONLY',
'REGISTER', 'REINTRODUCE', 'REQUIRES', 'RESIDENT',
'SAFECALL', 'STDCALL', 'STORED', 'VIRTUAL', 'WRITE',
'WRITEONLY',

{others}
'AT', 'ON'
);

constructor TaaPascalParser.Create(aInStm :
TaaInCharStream);

begin
inherited Create;
FInStrm := aInstm;
FKeywords := TaaHashTableLinear.Create(199, AAELFHash);
ppInitKeywords;

end;
destructor TaaPascalParser.Destroy;
begin
FKeywords.Free;
inherited Destroy;

end;
procedure TaaPascalParser.GetToken(var aTokenType :
TaaPascalToken; var aToken : string);

var
DummyObj : pointer;

begin
AAGetToken(FInStrm, aTokenType, aToken);
if (aTokenType = ptIdentifier) then
if FKeywords.Find(UpperCase(aToken), DummyObj) then
aTokenType := ptKeyword;

end;
procedure TaaPascalParser.ppInitKeywords;
var
i : integer;

begin
Assert(FKeywords <> nil,
'ppInitKeywords cannot be called with nil hash table');

for i := 0 to pred(KeywordCount) do
FKeywords.Insert(KeyWordList[i], nil);

end;

➤ Listing 6: Parsing keywords
in Pascal source.

➤ Figure 3:
The problematic NFA.

46 The Delphi Magazine Issue 68

states as having been reached in
some way.

Let’s take it slowly, and optimize
each state. State 0, as I have said,
can only reach state 2 and that’s on
a match with an X. There are no
no-cost moves from state 2, so
there are no optimizations
possible with state 0.

State 2 reaches state 3 with an
any character match. Using
no-cost moves from state 3, we can
go back to state 2, or reach state 4.
From state 4 we can reach state 2
(again) or state 6. So, ignoring the
duplicate state 2, we can see that
from state 2, with an any character
match, we can reach state 2 or
state 6.

State 3 is merely a no-cost move
state. We ignore it; similarly with
state 4.

State 6 just goes to state 7 on a
match with an X, and there are no
no-cost moves to follow from state
7 (it’s a terminating state, after all).
So there are no optimizations
possible with state 6.

State 7 is a terminating state and
therefore can have no
optimizations.

We therefore have the following
transition table:

State 0
match X
goto state 2

State 2
match any char
goto state 2
goto state 6

State 6
match X
goto state 7

State 7
stop

Not quite a DFA, but pretty close.
The reason it’s not a complete DFA
is that we still have to make a
choice at state 2 for an any charac-
ter match: either go back to state 2
or move on to state 6. Neverthe-
less, it’s much better than our orig-
inal NFA in that there are no longer
any no-cost moves, and it was the
no-cost moves that were our down-
fall with this simple, yet bizarre,
regex.

As you can see, we need to
change the elements in our

transition table slightly. Before
this analysis, we had two ‘next
state’ fields in the transition
record. Now we have to have an
array of them: we may have one, or
two, or many. We could use a bare
TList for this purpose, and type-
cast integers into pointers (or vice
versa) when we need to, but we are
likely to require an integer list class
at some stage, so our best bet is to
write one now (just as we did with
the integer deque, in fact).

My recommendation with TList
is to never descend from it. It was
originally designed that way (in
fact Danny Thorpe makes exactly
the same recommendation in his
excellent book, Delphi Component
Design, now sadly out of print), and
to my eyes it always looks awkward
making a descendant from it.
Better is to use delegation as the
inheritance mechanism: write a
class that has an internal TList
instance and delegate all the list
manipulation to this internal
instance. On this month’s compan-
ion disk is an implementation of
an integer list which follows this
methodology. I have not fleshed
out all the methods yet, so it’s a
little light compared to TList itself;
nevertheless it will be ample for
our purposes.

(I was annoyed and mortified to
find that Borland, in Delphi 5,
decided to eviscerate the lean-
and-mean TList in order that they
could create a TObjectList descen-
dant. And eviscerate it they did:
Clear is now an O(n) operation
instead of the original O(1) opera-
tion it used to be. Delete or set an
item and it takes longer. And so on,
and so forth. Everyone’s use of
TList suffers because someone at
Borland decided to follow some
misguided object oriented ideal.
And don’t get me started on the
rest of the classes in the Contnrs
unit: it should just be thrown away
and rewritten properly. Maybe
someone there will buy my book.
Harrumph!)

I did implement one extra thing
that TList does not have, though,
and that is the ability to maintain
the list in sorted order. If the
current list is sorted, and you add
another integer to the list using

the Add method, it gets inserted
into the correct place in the
sequence. A further wrinkle is that
the class has a property that
enables or disables duplicate
items (we don’t want them in this
application of the class).

A state record now contains the
following: a transition type, a
match character and character
set, and a list of next states. Since
we’re optimizing insitu, we won’t
actually change the state record in
any great way, we’ll just redefine
the second next state value to also
be an integer list.

The optimization we perform is
fairly easy. We visit each state in
turn. We ignore states that have
no-cost moves (in other words, we
ignore states that don’t attempt to
match anything). For a state that
matches something (be it an any
character match, a single charac-
ter match, or a match against a
class, both normal and negated),
we follow the link, and any no-cost
links from states we reach. For
each match state that we reach by
this process, we add it to the ‘next
state’ list for the state we’re at.

There’s an interesting catch to
this, though. The no-cost move
states we visit will have two possi-
ble moves (we’ve already unlinked
the no-cost states with only one
move, remember). We have to visit
the possible chains from both
links. But these chains may also
start off with no-cost move states,
and these in turn may have chains
that start with no-cost states. How
do we make sure that we visit all
of them? Think of the two possible
no-cost moves from such a state as
being called ‘left child’ and ‘right
child’. Ring any bells? Indeed: the
chains form a binary tree, and we
just need to write a recursive visit
method to do the work for us. List-
ing 7 shows this optimization
code, together with the recursive
walk method.

What else do we need to change?
The matching code, obviously.
Here, things simplify in one area,
but get a little more complex in
another. The good news, first: we
no longer have to push any no-cost
move states; there aren’t any of
them any more. The bad news:

48 The Delphi Magazine Issue 68

when we match something we have to enqueue all the
next states in the state list. Actually, the bad news isn’t
so bad: a simple for loop will do the trick. The new
string match code is shown in Listing 8.

After these changes, the Algorithms Alfresco regex
engine no longer thrashed my swap file. Matching
against the weird regex is now instantaneous, the way
it should be.

Julian Bucknall has finally finished his book, and it
should be available in all good bookstores in May
2001. He can be reached at julianb@turbopower.com.
The code that accompanies this article is freeware and
can be used as-is in your own applications.

© Julian M Bucknall, 2001

procedure TaaRegexCompiler.rcLevel2Optimize;
var i : integer;
begin
{cycle through all the state records,
except for the last one}
for i := 0 to (FTable.Count - 2) do begin
{get this state}
with PaaNFAState(FTable.List^[i])^ do begin
{if it's not a no-cost move state...}
if (sdMatchType <> mtNone) then begin
{create the state list}
sdNextList := TaaIntList.Create;
{walk the chain pointed to by the first next
state, adding the non-no-cost states to the list}
rcWalkNoCostTree(sdNextList, sdNextState1);

end;
end;

end;
end;
procedure TaaRegexCompiler.rcWalkNoCostTree(aList :
TaaIntList; aState : integer);

begin
{look at this state's record...}
with PaaNFAState(FTable.List^[aState])^ do begin
{if it's a no-cost state, recursively walk the
first, then the second chain}
if (sdMatchType = mtNone) then begin
rcWalkNoCostTree(aList, sdNextState1);
rcWalkNoCostTree(aList, sdNextState2);

end
{otherwise, add it to the list}
else
aList.Add(aState);

end;
end;

case sdMatchType of
mtNone :
begin
Assert(false, 'no-cost states shouldn''t be seen');

end;
mtAnyChar :
begin
{for a match of any character, enqueue next states}
for i := 0 to pred(sdNextList.Count) do
Deque.Enqueue(sdNextList[i]);

end;
mtChar :
begin
{for a match of a character, enqueue next states}
if (Ch = sdChar) then
for i := 0 to pred(sdNextList.Count) do
Deque.Enqueue(sdNextList[i]);

end;
mtClass :
begin
{for a match within a class, enqueue next states}
if (Ch in sdClass^) then
for i := 0 to pred(sdNextList.Count) do
Deque.Enqueue(sdNextList[i]);

end;
mtNegClass :
begin
{for match not within a class, enqueue next states}
if not (Ch in sdClass^) then
for i := 0 to pred(sdNextList.Count) do
Deque.Enqueue(sdNextList[i]);

end;
mtTerminal :
begin
{for a terminal state, the string successfully
matched if the regex had no end anchor, or we're
at the end of the string}
if (not FAnchorEnd) or
(StrInx > length(S)) then begin
Result := true;
Exit;

end;
end;

mtUnused :
begin
Assert(false, 'unused states shouldn''t be seen');

end;
end;

➤ Listing 7: Optimizing out all the no-cost moves.

➤ Listing 8: Matching with no no-cost moves.

	Any Comments?
	Input Character Stream
	The Comment Automaton
	Tokenizing
	Adding Keyword Detection
	Infinite Regexes

